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Overview 

 

 
 

• Structure of a parallel computer 

• Parallel Software for 16 cores (CPU) 

• Parallel Software for 1,600 cores (GPU) 
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state updates 

Programming Parallel Systems 

 

• So far, we talked (mainly) about storage systems 

– Main question: How can we guarantee a consistent 
system state 

 

 

 

 

• Already desktop systems can be used for parallel computation 

– Distribute work load in the system! 

– How can we do this? 

– What’s underneath the hood? 
job 

j1 jm … j2 
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Programming Parallel Systems: Basic Idea 

 

• Our model for parallel programming: 

 

• A job is split into many small tasks 

– These tasks can be executed in parallel 

 

• The tasks can be distributed 

– Each „worker thread“ may get many tasks 

 

• The partial results may be merged 

– This is just another kind of “task” 

 

job 

j1 jm … j2 

… 

r1 rm … r2 

result 
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Programming Parallel Systems: Promise and Reality 

Memory 

Promise A Real Computer? 

Processor 4 

Processor 1 

Processor 3 

Processor 2 

Memory/4 Memory/4 

Memory/4 Memory/4 

¿ 

Fast 

Not so fast 
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Programming Parallel Systems: Promise and Reality 

Memory 

Promise A Real Processor 

Proc. Core 

Cache 

Proc. Core 

Cache 

Memory/4 

More 
Processors … 

… with 
more 

Memory 
¿ Fast 

Not so fast Slow 
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• Need to know your hardware for maximum efficiency 

– Cache Sizes, Topology & Bandwidth of Buses 

– Think: Data locality, (hidden!) communication cost 

Programming Parallel Systems: Promise and Reality 

Intel Processor 

Memory/4 

Memory 

HT Core 

Cache 

HT Core 

Cache 

HT Core 

Cache 

HT Core 

More 
Processors… 

… with more 
Memory 

Promise 
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Programming Parallel Systems: A To-Do List 

• We need to 

– write code for worker threads 

– distribute the threads to the cores 

– split the job into smaller tasks (how small?) 

– assign tasks to threads 

– balance the load on all threads 

– collect the (partial) results from the machines 

– assembly the results 

 

• Should be fast as well, i.e., make use of locality 

– cache locality and prefer local memory over remote memory! 

 

• The complexity of the program increases significantly!!! 

 

• Solution? 
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OpenMP 

• OpenMP is a specification developed by AMD, Cray, IBM, Intel, NVIDIA, … 

– Parallelization 

– Load balancing 

– Implicit use of locality 

– If you know what you are doing 

– All in one library! 

 

• Not really a library, but a language-extension 

– C, C++, Fortran (still used in scientific computing) 

 

• Supports Basic Parallel Constructs 

– Loops, basic reductions, tasks, … 

– Synchronization 
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OpenMP: An Example 

void parallel() 
{ 
#pragma omp parallel for 
  for (int i = 0; i < N; i++) 
    a[i] *= b[i]; 
} 

void sequential() 
{ 
  for (int i = 0; i < N; i++) 
    a[i] *= b[i]; 
} 

• Split loop into tasks 
• Distribute tasks to workers 

 

std::vector<int> a(N); 
std::vector<int> b(N); 

a[i]*b[i]? 

4 Procs x 4 Cores = 16 Threads 
Speedup: 3.1x 

Only 3.1x? 
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OpenMP: Under the Hood 

void parallel() 
{ 
#pragma omp parallel for 
  for (int i = 0; i < N; i++) 
    a[i] *= b[i]; 
} 

0.. K.. 2K.. N-K..N Iteration of for-loop: 

Where are the memory cells accessed in iteration i? 

When a worker is free: 
grab the next available task 

(block of iterations) 
 

… 
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OpenMP: Digging Deeper 

• Physical memory location 
 depends on Operating System 

 

• Virtual Memory presented as continuous block 

– Physical Memory may be scattered 

– A single page of virtual/physical memory cannot be scattered 

– Typical page sizes: 4KB, SuperPage: 4MB 

 

• Many OSes 

– Explicitly: Offer system call to pin a page to a physical processor by hand 

– Implicitly: Pin virtual pages to processor that first accesses it 

– How is this done? 

 

std::vector<int> a(N); 
std::vector<int> b(N); 
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OpenMP: Static Scheduling int *a, *b; 

a = (int*)malloc(N*sizeof(int)); 
b = (int*)malloc(N*sizeof(int)); 

void fill() 
{ 
#pragma omp parallel for schedule(static) 
  for (int i = 0; i < N; ++i) { 
    a[i] = a_value(i); 
    b[i] = b_value(i); 
  } 
} Chunk x is assigned to thread x mod num_threads 

void parallel() 
{ 
#pragma omp parallel for schedule(static) 
  for (int i = 0; i < N; ++i) 
    a[i] *= b[i]; 
} 4 Procs x 4 Cores = 16 Threads 

Speedup: 6.7x 

Only 6.7x? 
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Not Every Parallel Program is a for-loop 

 

• Barely scratched the surface of OpenMP 

– Reductions  
int sum = 0; 

#pragma omp parallel for reduction(+:sum) 
  for (int i = 0; i < N; i++) { 

    sum += a[i] + b[i]; 

  } 
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Not Every Parallel Program is a for-loop 

 

• Barely scratched the surface of OpenMP 

– Reductions 

– Arbitrary task types 

 

cout<<"A "; 

#pragma omp parallel 
{ 

  #pragma omp single 

  { 
    #pragma omp task 

    { cout<<"car "; } 
    #pragma omp task 

    { cout<<"race "; } 

 
 

  } 
} 

cout<<endl; 

A car race A car race 
(or) 

A race car 

A race car car race 
(or) 

A car car race race 
(or…) 
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Not Every Parallel Program is a for-loop 

 

• Barely scratched the surface of OpenMP 

– Reductions  

– Arbitrary task types 

– Synchronization primitives 

 

cout<<"A "; 

#pragma omp parallel 
{ 

  #pragma omp single 

  { 
    #pragma omp task 

    { cout<<"car "; } 
    #pragma omp task 

    { cout<<"race "; } 

    #pragma omp taskwait 
    cout<<"is fun to watch"; 

  } 
} 

cout<<endl; 

A car race is fun to watch 
(or) 

A race car is fun to watch 
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Not Every Parallel Program is a for-loop 

 

• Barely scratched the surface of OpenMP 

– Reductions  

– Arbitrary task types 

– Synchronization primitives 

– … 

 

• Already a simple loop can be tricky 

 

• Simple loops are everywhere! 

– Think: Vectors, Matrix Multiplication 

– Simple loops deserve their own hardware 
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Graphic Processing Unit (GPU) 

 

• The complexity of the architecture increases further 

 

• The GPU consists of compute units, each with multiple stream cores 

– As an example, AMD Radeon R9 290X has 2816 stream cores 

 

 

 

 

 

 

Compute unit Compute unit Compute unit . . . 
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The Real Deal 
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Graphic Processing Unit (GPU) 

• Different compute units can do different things 

• All stream cores execute the same instruction sequence 

– With separate local memories 

 

 

 

 

 

 

 

 

 

 

 

• What is this good for? 

 

 

Compute unit  Compute unit 

𝐴 + 𝐵 

𝐴 + 𝐵 

𝐴 + 𝐵 

𝐴 + 𝐵 

𝐷 ∗ 𝐶 

𝐷 ∗ 𝐶 𝐷 ∗ 𝐶 

𝐷 ∗ 𝐶 

Stream cores Stream cores 
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Matrix Operations 

 

• Matrix operations are the core of graphics 
computations 

 

• For example, matrix multiplication can be 
highly parallelized 

 

• Naive: 𝑂(𝑛3) multiplications 

Core 𝑖 

Core 𝑗 
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Matrix Multiplication 

• Naive: 
𝑂(𝑛3) multiplications 

– Small rounding errors 

 

• Better: Strassen 

𝑂(𝑛2.807) multiplications 

– Re-use partial results 

– Can also be done in parallel 

 

• Even better? Coppersmith-Winograd 
𝑂 𝑛2.375477  multiplications 

– Asymptotically better 

– But not for practical matrix sizes 
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All-Pairs Shortest Path 

• Some problems can be represented nicely by matrices 

 

• Let 𝐺 = 𝑉, 𝐸  be a connected graph. The adjacency matrix 𝑀 of 𝐺 has a 
1-entry on 𝑀(𝑢, 𝑣) if there is an edge between nodes 𝑢 and 𝑣 
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All-Pairs Shortest Path 

• The adjacency matrix gives us all nodes at distance 1 

 

• To get nodes at distance 2, multiply the adjacency matrix by itself 

 

• 𝑀2 
𝐴, 𝐹 = 𝑀 𝐴, 𝐴 𝑀 𝐴, 𝐹 + 𝑀 𝐴, 𝐵 𝑀 𝐵, 𝐹 + … +  𝑀 𝐴, 𝐹 𝑀 𝐹, 𝐹  

                   ≥ 1 
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Solving the All-Pairs Shortest Path Problem 

 

 

• Similarly, get nodes at distance 3 by multiplying 𝑀2 by 𝑀: 

  𝑀3 𝐴, 𝐼 = 𝑀2 𝐴, 𝐴 𝑀 𝐴, 𝐼 + 𝑀2 𝐴, 𝐹 𝑀 𝐹, 𝐼 + …  ≥ 1  
  

 

 



8/26 

All-Pairs Shortest Path 

 
  

 

 

 

• After 𝑖 multiplications, 𝑀 𝑢, 𝑣 ≠ 0 if there is a path of length at most 
𝑖 + 1 from 𝑢 to 𝑣  

 

• After 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 − 1 multiplications, we have found all nodes 

 

• The length of the shortest path between any two nodes 𝑢 and 𝑣 is the 
index of the step 𝑖 for which, 𝑀(𝑖 − 1) 𝑢, 𝑣 = 0 and 𝑀𝑖 𝑢, 𝑣  ≥ 1 

– Write distances to output matrix 𝑄 

 

• We can store the partial paths found in the intermediate steps 

– get the actual shortest paths in the end 
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Conclusion 

 

• OpenMP 

– Widely used in scientific computing 

– CPUs execute ‘real’ threads 

– Don’t have to execute the same line of code everywhere 

 

• GPUs have way more cores than CPUs 

– Enables more parallelism 

– Cores execute the same instruction per clock cycle 

– Efficient for matrix operations 

– Can be programmed using 

– OpenCL 

– CUDA 

– possibly OpenMP in the future 
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Outlook 

 

• Faults 

– OpenMP, OpenCL, CUDA don’t care about faults 

– Hadoop/MapReduce: Store all intermediate steps, for fault-tolerance 

– Apache Spark: Recompute intermediate steps in case of (rare) faults 

 

• Bottlenecks 

– Solution to problem designed around the shortcomings of the hardware 

– Why don’t we design the hardware around our problem? 
Remove bottlenecks, fine-tune relative speed of system components 

– «MinuteSort with Flat Datacenter Storage», MSR 
Disk reads can be a bottleneck as well → Design whole datacenter around it 
Overlap disk reads with asynchronous sorting-passes of already available data 
Unbeaten entry from 2012 for ‘Number of elements sorted in 60 seconds’ 
www.sortbenchmark.org 
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That’s all, folks! 
Questions & Comments? 


